Publications

Energy Materials Laboratory

Publications

Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr3 Films for Efficient Light-Emitting Diodes
Authors
M. Shin, H. S. Lee, Y. C. Sim, Y. Cho, K. C. Choi, and B. Shin
Journal
ACS Applied Materials & Interfaces
Vol
12
Page
1944-1952
Year
2020

Because of its excellent optical properties and good stability, all-inorganic halide perovskite CsPbX3 (X = I, Br, Cl) has been attracting interest for use in light-emitting diodes (LEDs). One challenge is improving the efficacy of the spatial confinement of excitons for higher luminescence efficiency. Here, we present a simple yet very effective strategy to form fine-grain-structured CsPbBr3 polycrystalline films prepared by thermal co-evaporation. The strategy involves controlling growth kinetics by adjusting the deposition rate, which, along with growth temperature, determines the nucleation rate and therefore the eventual grain structure. A correlation between deposition rate and average grain size was noted except for a very large deposition rate when there were large hillocks, which we attributed to the peculiar growth behavior of PbBr2 films. The growth conditions that produced a nanoscale grain structure and textured orientations without large hillocks also resulted in the highest luminescence efficiency as we anticipated. With the optimized CsPbBr3 light emitters, we demonstrate a green-light-emitting (at 524 nm) LED with a maximum current efficiency of 1.07 cd/A and an extremely narrow electroluminescence spectrum of 18 nm, a result that highlights the potential of vacuum-processed CsPbBr3 films for high-efficiency LEDs.